

UNIVEX

Experimental systems for thin film coating

Experimentation systems

Vacuum based Physical Vapor Deposition (PVD) processes are critical and enabling components of many modern technologies and components. Both researching new fundamental phenomenon and developing new products require laboratory testing and integration of PVD processes.

Having a reliable, repeatable and professional platform on which to perform research and pilot-scale experiments of vacuum coating is essential to efficient and cost effective development. The UNIVEX family of vacuum coating systems make professional results possible.

UNIVEX systems are standardized for reliability, but modular and highly configurable to adapt to changing process requirements. This flexibility enables upgrades or retrofits as research or development needs change over time.

Applications

- Sensor technology
- Optoelectronics
- Dactyloscopy / Forensic analysis
 Spectacle and precision optics

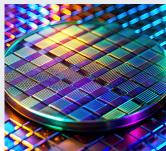
- Tribology / Wear protection
- · Lift-off processes
- Laser
- Storage media
- Solar
- Thermovoltaics
- Glass coating (UV) protection, Lotus effect)
- Superconductors
- Foil coating
- · Decorative coatings / Costume iewelry
- Medical devices
- Space simulation

Process components

- Thermal evaporation
- Organics evaporation
- Electron beam evaporation
- · Effusion cells
- DC sputtering
- RF sputtering

- Ion sources
- Process gas inlet
- Film thickness measurement
- Substrate rotation
- Substrate bias

- Substrate manipulation
- Planetary drives
- Heating, cooling, tempering
- Shrouds
- Load lock



Thin film deposition units UNIVEX

The UNIVEX system range is well established for experimental coating and thin film deposition applications in university and industrial research and pilot production.

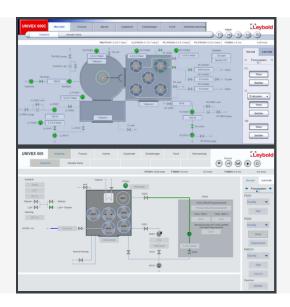
UNIVEX are multipurpose coating systems for the production of functional physical deposition (PVD) layers. Features such as modular designs, variable chamber sizes and a numerous accessories make UNIVEX systems versatile across wide fields of applications.

Leybold provides UNIVEX system solutions, customizable for specific process needs. Our UNIVEX enable highly reproducible results through easy operation with full process control.

The entire line

UNIVEX

Advantages


- Universally configurable for almost all vacuum
- PVD coating processes
- · Simple to operate

- Compact footprint
- · Easy to retrofit and upgrade
- Incorporates modern vacuum technology and electronics

UNIVEX Box Coating systems are designated by number representing their chamber widths

UNIVEX Software

- User-friendly PC/PLC system control, with large graphic touchscreen.
- UNIVEX operating software
- Automatic batches
- · Recipe processing
- Data logging and trend displays
- Self-monitoring of relevant system functions, combined with an efficient service.

Basic models

UNIVEX D Dactyloscopy

UNIVEX C Cluster Tool

UNIVEX G Glove Box Systems

from experiment to series production

Box coating systems

Advantages

- · Modular system design
- Pump system optimized to the application
- · Multi-purpose vacuum chamber
- · Convenient access to all installed equipment
- Simple operation
- · Multiple deposition techniques in same chamber
- · Cleanroom compatible

Design

- Compact unit with direct access to the process chamber
- The UNIVEX box coaters systems consist of a process and a control module:

Process module:

- vacuum chamber
- coating components
- pump system

Control module:

- · PLC, PC controller
- · HMI visualization
- · Power supply and distribution

UNIVEX 250 | UNIVEX 400 | UNIVEX 600 | UNIVEX 900

compact, high performance systems

System details

Vacuum chamber

- Box-shaped stainless steel vacuum chambers UNIVEX 250-600
- Octagonal stainless steel vacuum chamber UNIVEX 900
- Hinged door for simple chamber access
- Viewing window with coating protection
- · Removable stainless steel protection panels
- Flexible layout for chamber bottom and chamber top
- Connecting flanges for pump system and process components
- · Coolable and heatable chamber walls optional

Vacuum system

- Mechanical forevacuum pump (dry compressing or oil sealed)
- High vacuum pump (turbomolecular or cryo pump)
- Vacuum valves
- · Pressure measurement devices

Glove box systems

Advantages

- Direct and easy access to process equipment via front side sliding door
- · Convenient service access via back side hinged door
- · Customized system configuration
- Integration of any process components
- Easy operation via full color touch-screen

UNIVEX G

matches easily with a glovebox of your choice

Vacuum chamber

- Box-shaped stainless steel vacuum chambers UNIVEX 250 G - 450 G
- Sliding front door for easy chamber access through the glove box
- Viewing window with coating protection
- · Removable stainless steel coating
- protection panels
- Flexible layout for chamber bottom and chamber top
- Connecting flanges for pump system and process components

All system components with exception of the sliding door are accessible from outside the glove box

Typical applications

Vacuum deposition of metals onto oxygen/ moisture sensitive layers, including organic electronics or biological samples

- Organic based photovoltaics (OPV)
- Organic light-emitting diodes (OLED)
- Flexible / organic electronics

Cluster tool systems

UNIVEX C

the cluster tool solution

Design

- Central load lock system
 Central transfer chamber
 with
- vacuum robot. Separate pump systems for each chamber.
- PLC controlled, fully automated system operation

Advantages

- · Customized system design
- Programmable, recipe controlled process sequence
- Fully automated process control
- Excellent process vacuum, low residual gas contaminates
- Easy operation via full color touch- screen PLC

Typical applications

- Automated coating sequences in research, development and pilot production
- Multiple deposition chambers for sputtering metals and dielectrics.
- Applications with high demands for wafer throughput or complex layer requirements, including a variety of materials to be deposited without breaking vacuum

Dactyloscopy systems

UNIVEX D

proven in laboratories for criminal investigations

Advantages

- Easily controllable thermal coating process
- Coating of large areas up to 800 x 400 mm
- Short cycle times, depending on the material with the fingerprint evidence
- · Good contrast and visibility on multicolor surfaces
- The material containing the fingerprint evidence remains undamaged

Typical applications

Metal evaporation process to reveal fingerprints on items containing finger print evidence

